Howard C. Elman and Gene H. Golub

نویسندگان

  • HOWARD C. ELMAN
  • GENE H. GOLUB
چکیده

We perform an analytic and experimental study of line iterative methods for solving linear systems arising from finite difference discretizations of non-self-adjoint elliptic partial differential equations on two-dimensional domains. The methods consist of performing one step of cyclic reduction, followed by solution of the resulting reduced system by line relaxation. We augment previous analyses of one-line methods, and we derive a new convergence analysis for two-line methods, showing that both classes of methods are highly effective for solving the convection-diffusion equation. In addition, we compare the experimental performance of several variants of these methods, and we show that the methods can be implemented efficiently on parallel architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EditionOn the convergence of line iterative methodsfor cyclically reduced non - symmetrizable linearsystemsHoward

We derive analytic bounds on the convergence factors associated with block relaxation methods for solving the discrete two-dimensional convection-diiusion equation. The analysis applies to the reduced systems derived when one step of block Gaussian elimination is performed on red-black ordered two-cyclic discretizations. We consider the case where centered nite diierence discretiza-tion is used...

متن کامل

Line Iterative Methods for Cyclically Reduced Discrete Convection-Diffusion Problems

An analytic and empirical study of line iterative methods for solving the discrete convection-diffusion equation is performed. The methodology consists of performing one step of the cyclic reduction method, followed by iteration on the resulting reduced system using line orderings of the reduced grid. Two classes of iterative methods are considered: block stationary methods, such as the block G...

متن کامل

Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations

Howard C. Elman1, , David J. Silvester2, , Andrew J. Wathen3, 1 Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA; e-mail: [email protected] 2 Department of Mathematics, University of Manchester, Institute of Science and Technology, Manchester M601QD, UK; e-mail: [email protected] 3 Oxford University, Computin...

متن کامل

Efficient Solver for Convection-Diffusion Equations

Title of Dissertation: On the Implementation of an Accurate and Efficient Solver for Convection-Diffusion Equations Chin-Tien Wu, Doctor of Philosophy, Nov 2003 Dissertation directed by: Dr. Howard C. Elman Department of Computer Science In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010